
cctbx news

Ralf W. Grosse-Kunstlevea, Peter H. Zwarta, Pavel V. Afoninea, Thomas R. Ioergerb,
Paul D. Adamsa

aLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA and bTexas A&M University,
College Station, TX 77843, USA. E-mail: rwgk@cci.lbl.gov ; WWW: http://cci.lbl.gov/

Abstract
We describe recent developments of the Computational Crystallography Toolbox.

Preamble
In order to interactively run the examples scripts shown below, the reader is highly encouraged to visit
http://cci.lbl.gov/cctbx_build/ and to download one of the completely self-contained, self-extracting
binary cctbx distributions (supported platforms include Linux, Mac OS X, Windows, IRIX, and Tru64
Unix). All example scripts shown below were tested with cctbx build 2006_11_22_0037.

In the following we refer to our articles in the previous editions of this newsletter as "Newsletter No. 1",
"Newsletter No. 2", etc. to improve readability. The full citations are included in the reference section.

1 Introduction
The Computational Crystallography Toolbox (cctbx, http://cctbx.sourceforge.net/) is the open-source
component of the Phenix project (http://www.phenix-online.org/). Most recent cctbx developments are
geared towards supporting new features of the phenix.refine application. Thus, the open-source mmtbx
(macromolecular toolbox) module is currently being most rapidly developed. In this article we give an
overview of some of the recent developments. However, the main theme of this article is the presentation
of a light-weight example command-line application that was specifically developed for this newsletter:
sequence alignment and superposition of two molecules read from files in PDB format. This involves
parameter input based on the Phil module presented in Newsletter No. 5, fast reading of the PDB files
with the new iotbx.pdb.input class, simple sequence alignment using the new mmtbx.alignment
module, and use of the Kearsley (1989) superposition algorithm to find the least-squares solution for
superposing C-alpha positions. The major steps are introduced individually, followed by a presentation of
the complete application.

The example application is deliberately limited in functionality to make it concise enough for this article.
The main goal is to show how the open-source components are typically combined into an application.
Even though the example is quite specific to macromolecular crystallography, we believe it will also be
useful for a small-molecule audience interested in utilizing the large open-source library of general
crystallographic algorithms (see our previous articles in this newsletter series) to build an application.

2 iotbx.pdb
The PDB format is the predominant working format for atomic parameters (coordinates, occupancies,
displacement parameters, etc.) in macromolecular crystallography, but many small-molecule programs
also support this format. phenix.refine also utilized the PDB format, mainly to facilitate easy
communication with other programs, most notably graphics programs for visualization.

Page 92

2.1 iotbx.pdb.input
The PDB format specifications are available at http://www.pdb.org/ . Technically, the format is very
simple, therefore a vast number of parsers exist in scientific packages. The cctbx is no exception. A parser
implemented in Python has been available for several years. In many cases Python's runtime performance
is sufficient for interactive processing of PDB files, but can be limiting for large files, or for traversing the
entire PDB database (currently 40731 files, about 25 GB total). This has prompted us to implement a fast
parser in C++, complete with Python bindings in the same style as all other cctbx C++ classes,
comprehensive error reporting, and fully automatic memory life-time management (no manual new/delete
or malloc/free). Reading a PDB file from Python is simple:

import iotbx.pdb
pdb_inp = iotbx.pdb.input(file_name="pdb1htq.ent")

With a size of 76 MB this is the largest file in the PDB, but full processing takes only 3.8 s on a 2.6 GHz
Opteron, of which about 0.5 s are for simply transferring the data from disk into memory. In contrast, the
older Python implementation needs 89 s for processing the file into data structures of similar complexity.
In the future all our cctbx-based applications will make use of the new, faster parser. Interestingly, when
processing the PDB database with iotbx.pdb.input using multiple CPUs, disk-I/O is the rate limiting
step. Using 8 CPUs, we can process all 25 GB in less than five minutes. Using more CPUs does not
reduce this time.

The pdb_inp object holds the information from the PDB file in a structured way. The "sections" of the
file according to the PDB format specifications at http://www.pdb.org/ are available as, e.g.:

pdb_inp.title_section()
pdb_inp.remark_section()
pdb_inp.crystallographic_section()
...

In Python these sections appear as simple lists of strings. The full power of Python and the cctbx libraries
is available for post-processing this information. Since most sections are never very large, there is no
point in writing specialized C++ processing code, which is typically significantly more labor intensive
compared to writing equivalent Python code, and much more difficult to adjust for new developments.

The only section of PDB files that is sometimes found to be very large is the "coordinate section" with the
ATOM and HETATM records. This section is fully processed in the iotbx.pdb.input constructor
shown above. The corresponding information is available via the methods:

labels_list = pdb_inp.input_atom_labels_list()
atoms = pdb_inp.atoms()

which return arrays of the same length, each with one data object per atom. The information for one atom
is again accessible from Python, e.g.:

for labels,atom in zip(labels_list, atoms):
 print labels.chain(), labels.resname(), labels.name(), atom.xyz, atom.b

2.2 iotbx.pdb.hierarchy
The input_atom_labels objects in the pdb_inp.input_atom_labels_list() above store the name,
resname, chain, icode (insertion code), segid (segment identifier), and altloc (alternate location
indicator) for each atom. This information defines a hierarchical organization of the macromolecules, but
in a highly redundant way which complicates further processing steps, such as the assignment of
geometry restraints (see Newsletter No. 4). iotbx.pdb.input supports building an
iotbx.pdb.hierarchy object. The redundant atom labels are analyzed to build a non-redundant six-deep
hierarchy object, e.g.:

Page 93

hierarchy = pdb_inp.construct_hierarchy()

The six-deep data structure consists of:

hierarchy
 model
 chain
 conformer
 residue
 atom

which can be concisely traversed from Python:

for model in hierarchy.models():
 for chain in model.chains():
 for conformer in chain.conformers():
 for residue in conformer.residues():
 for atom in residue.atoms():
 # ...

The time for building the hierarchy object given pdb1htq.ent is about 0.7 s. Traversing the hierarchy
with the five-deep loop above takes only about 0.6 s, i.e. is unlikely to be a rate-limiting step even for
very large structures. Therefore the few lines of example code given in this section are probably one of
the most convenient and efficent ways of quickly processing a PDB file from a scripting language.

For general information on how to learn more about Python objects, look under the "Tutorials Siena
2005" link at cctbx.sf.net. For example, the command:

libtbx.help iotbx.pdb.residue

will show the complete interface of the residue object.

hierarchy objects can be manipulated or constructed from scratch from both Python and C++. However,
high-level functionality like inserting or deleting residues or chains, or formatting output is currently not
available. We will add such high-level manipulations as the need arises. The typical development process
is to implement a required high-level operation given the currently available interfaces, then add it as a
new method to the most suitable existing class to make it easily accessible for other purposes. We expect
the hierarchy objects to continuously grow in this way for some time to come.

2.3 pdb_inp.xray_structure_simple
The xray_structure_simple simple method of iotbx.pdb.input is an efficient implementation
converting the information stored in the pdb_inp object above to a list of cctbx.xray.scatterer
objects, managed by the cctbx.xray.structure class. See our previous newsletter articles and the Siena
2005 tutorials for various examples on how to work with these objects.

Fundamentally, the conversion is trivial. Each input atom is converted to exactly one xray.scatterer.
However, as always, the devil is in the details. The PDB CRYST1 and SCALE cards have to be evaluated to
obtain the correct fractionalization matrix (PDB coordinates are with respect to a Cartesian basis). The
trickest problem is the determination of the scattering type for each atom, for which three PDB columns
have to be considered (atom name, element symbol, charge). Following the PDB format specifications
strictly, the scattering type is clearly defined, but unfortunately deviations from the strict specifications
are quite common. For example, the element symbol may be missing or mis-aligned, or the charge
symbol is sometimes found to be given as "+2" instead of "2+". The xray_structure_simple method
allows for some deviations from the strict PDB specifications as long as the error is highly obvious. More
serious errors are communicated via exceptions with carefully formatted, informative error messages.

Page 94

The xray_structure_simple method is relatively expensive in terms of runtime, partially because the
site symmetry is determined for each atom, which involves looping over the symmetry elements and
distance calculations. The runtime for the pdb1htq.ent structure (978720 atoms) is about 9.9 s.
However, this step is typically performed only once at the start of a program. To put this further into
context, a structure factor calculation up to a resolution of 3 A, using the FFT method, takes about 26 s.
This underlines that the time for I/O using the new pdb.input class is generally neglible in the context of
a whole application.

For completeness, the code for building the xray.structure and computing the structure factors is:

xray_structure = pdb_inp.xray_structure_simple()
xray_structure.structure_factors(d_min=3, algorithm="fft")

3 mmtbx.alignment
mmtbx.alignment provides algorithms for aligning two protein sequences, where each sequence is
represented as a string of one-letter amino-acid codes. The implementation is based on the ideas of Gotoh
(1982) and runs in quadratic time O(M*N), where M and N are the sequence lengths. It does both global
(Needleman & Wunsch, 1970) and local (Smith & Waterman, 1981) alignments, assuming affine (linear)
gap penalties (for which default gap-cost parameters may be changed by the user). Alignments are based
on maximizing similarity. Similarity scores between amino acids are specified via symmetric matrices.
Similarity matrices of Dayhoff (1978) and BLOSUM50 (Henikoff & Henikoff (1992),
http://en.wikipedia.org/wiki/BLOSUM) are provided. User-supplied matrices are also supported (this
feature also enables alignment of non-amino-acid sequences).

To show a short example of aligning two sequences:

from mmtbx.alignment import align
align_obj = align(
 seq_a="AESSADKFKRQHMDTEGPSKSSPTYCNQMM",
 seq_b="DNSRYTHFLTQHYDAKPQGRDDRYCESIMR")

The align_obj holds matrices used in the dynamic-programming
(http://en.wikipedia.org/wiki/Dynamic_programming) alignment algorithm. Methods are available to get
the alignment score and to extract the actual sequence alignment:

print "score: %.1f" % align_obj.score()

alignment = align_obj.extract_alignment()
print alignment.match_codes
print alignment.a
print alignment.matches(is_similar_threshold=0)
print alignment.b

The output is:

score: 6.0
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
AESSADKFKRQHMDTEGPSKSSPTYCNQMM
 | | || | |
DNSRYTHFLTQHYDAKPQGRDDRYCESIMR

match_codes is a string of the characters m, i, and d, for match, insertion, and deletion, respectively. The
alignment above is based on identity matches only. Alternatively, the similarity matrices of "dayhoff" or
"blosum50" can be used, e.g.:

align_obj = align(
 seq_a="AESSADKFKRQHMDTEGPSKSSPTYCNQMM",
 seq_b="DNSRYTHFLTQHYDAKPQGRDDRYCESIMR",

Page 95

 style="global",
 gap_opening_penalty=10,
 gap_extension_penalty=2,
 similarity_function="blosum50")

The output of the same print statements as above is in this case:

mmmmmmmmmmmmmmmmdmmmmmmmmmmmmmi
AESSADKFKRQHMDTEGPSKSSPTYCNQMM-
 | | || | * | || *|
DNSRYTHFLTQHYDAK-PQGRDDRYCESIMR

Here the * indicate residues that are similar above the is_similar_threshold, using the blosum50
similarity matrix.

Alignment of sequences of typical lengths is fast enough for interactive work (300 residues: about 1 s),
but can take minutes given thousands of residues (2200 residues: about 40 s). Also, for very long
sequences the memory consumption can be significant since four M*N alignment matrices are stored as
pure Python objects. In the future we may reimplement the core of the alignment algorithm in C++ to
increase runtime performance (by a factor 30-50) and to significantly reduce memory consumption.
However, the Python interface presented here is expected to stay the same.

4 scitbx.math.superpose
The scitbx.math.superpose module implements the quaternion method of Kearsley (1989) for
superpositioning two related vector sets. In comparison to the related method of Kabsch (1976), this
method has the advantage of gracefully handling degenerate situations (e.g. if all atoms are on a straight
line) without the need for handling special cases (Kabsch, 1978). For all non-degenerate situations, the
results of the Kabsch and Kearsley methods are identical within floating point precision.

We will give a self-contained example, using the iotbx.pdb.input class discussed above. First, we
define a few atoms to be aligned:

 # residues in PDB entry 1AON
 gly1 = """\
ATOM 55 N GLY A 9 47.072 -70.250 -4.389 1.00 27.28
ATOM 56 CA GLY A 9 45.971 -69.823 -3.545 1.00 22.53
ATOM 57 C GLY A 9 45.946 -68.397 -3.056 1.00 25.45
ATOM 58 O GLY A 9 46.350 -67.467 -3.764 1.00 28.17
""".splitlines()
 gly2 = """\
ATOM 134 N GLY A 19 46.795 -55.602 -6.961 1.00 15.66
ATOM 135 CA GLY A 19 47.081 -55.164 -8.320 1.00 11.86
ATOM 136 C GLY A 19 45.844 -54.551 -8.936 1.00 7.75
ATOM 137 O GLY A 19 45.851 -53.398 -9.384 1.00 10.45
""".splitlines()

This code produces two Python lists of Python strings. To be compatible with the iotbx.pdb.input
constructor, these have to be converted to C++ arrays ("flex arrays", see Newsletter No. 1):

from cctbx.array_family import flex
gly1 = flex.std_string(gly1)
gly2 = flex.std_string(gly2)

Now we are ready to instantiate two iotbx.pdb.input objects. Instead of reading directly from a file as
shown before, we read the PDB lines from the C++ array of strings:

import iotbx.pdb
pdb1 = iotbx.pdb.input(source_info=None, lines=gly1)
pdb2 = iotbx.pdb.input(source_info=None, lines=gly2)

Page 96

Next, we extract two C++ flex arrays with the coordinates:

sites1 = pdb1.extract_atom_xyz()
sites2 = pdb2.extract_atom_xyz()

These arrays can be used directly to instantiate the least_squares_fit class which computes the
rotation and translation for the best fit using the algorithm of Kearsley (1989) (which is the default):

from scitbx.math import superpose
superposition = superpose.least_squares_fit(
 reference_sites=sites1,
 other_sites=sites2)

The r and t attributes are scitbx.matrix instances which provide mathematica_form() methods which
we use here for pretty-printing:

print superposition.r.mathematica_form(
 label="r", one_row_per_line=True, format="%8.5f")
print superposition.t.mathematica_form(
 label="t", format="%8.5f")

The output is:

r={{-0.72436, -0.03369, 0.68860},
 {-0.43741, 0.79448, -0.42127},
 {-0.53289, -0.60635, -0.59023}}
t={{83.88229}, {-8.78874}, {-17.07881}}

To compute the RMS difference of the superposed sites:

sites2_fit = superposition.other_sites_best_fit()
print "rms difference: %.4f" % sites1.rms_difference(sites2_fit)

Output:

rms difference: 0.3671

The following code produces a listing of distances for each atom:

from scitbx import matrix
lbls1 = pdb1.input_atom_labels_list()
lbls2 = pdb2.input_atom_labels_list()
for l1,s1,l2,s2f,d in zip(lbls1, sites1,
 lbls2, sites2_fit,
 sites2_fit-sites1):
 print l1.pdb_format(), "%8.4f, %8.4f, %8.4f" % s1
 print l2.pdb_format(), "%8.4f, %8.4f, %8.4f" % s2f
 print " difference: %8.4f, %8.4f, %8.4f" % d, \
 "|d| = %6.4f" % abs(matrix.col(d))
 print

The input atom labels are obtained from the iotbx.pdb.input objects using the pdb_format() method
which returns the atom labels in the same arrangement as found in the PDB file; this output is useful for
locating an atom in the original file. sites2_fit-sites1 uses flex array algebra to compute the
difference vectors, and the scitbx.matrix class is used to compute the length of the vector. The output
starts with:

" N GLY A 9 " 47.0720, -70.2500, -4.3890
" N GLY A 19 " 47.0655, -70.5000, -4.1925
 difference: -0.0065, -0.2500, 0.1965 |d| = 0.3180
...

Page 97

It is easy to verify that the Kabsch method gives identical results for this non-degenerate configuration of
atoms:

superposition_kabsch = superpose.least_squares_fit(
 reference_sites=sites1,
 other_sites=sites2,
 method="kabsch")

In this case the rotation matrix and the translation vector are exactly identical to the Kearsley results
shown above. However, method="kabsch" should not be used in applications since we didn't spent the
effort of writing code for special cases. Therefore the Kearsly method is the default.

5 Putting the pieces together: mmtbx.super
The large variety of tools in the cctbx enables quick develop of small scripts (a.k.a. jiffies) that perform
non-trivial tasks with relative ease.

In a typical jiffy, most work goes into building a user interface that facilitates the communication between
program and user. The actual computational work that needs to be done is often not very laborious, and
can be as trivial as a simple call of a library function.

The following paragraphs will illustrate the rapid development of a lightweight structure superposition
command line tool using a variety of recent additions to the cctbx. The full code can be found in
cctbx_sources/mmtbx/mmtbx/command_line/super.py. This script is also available from the
command line under the name mmtbx.super.

5.1 Design
The goal is to develop a simple tool that carries out the following tasks:

1. Determine input file names and alignment parameters (user interface).

2. Read in two related PDB files.

3. Determine corresponding residues between the two PDB files.

4. Compute a least-squares superposition of C-alpha atoms.

5. Write out the superposed coordinates to a new PDB file.

5.2 User interface
A basic, yet versatile, user interface can be implemented in a very straightforward manner using Phil.
Since Phil has been discussed at length in Newsletter No. 5, we limit ourselves to a brief overview of the
implementation.

The Phil "master parameters" definition embedded in super.py is:

import libtbx.phil
master_params = libtbx.phil.parse("""\
super {
 fixed = None
 .type = str
 moving = None
 .type = str
 moved = "moved.pdb"
 .type = str
 alignment_style = *local global

Page 98

 .type = choice
 gap_opening_penalty = 20
 .type = float
 gap_extension_penalty = 2
 .type = float
 similarity_matrix = *blosum50 dayhoff
 .type = choice
}
""")

master_params is a Phil scope instance with a super sub-scope (for clarity) that defines the parameters
we need. fixed and moving are input files names, moved is an output file name. The other parameters are
for mmtbx.alignment.align.

All parameters can be modified from the command line, e.g.:

mmtbx.super fixed=first.pdb moving=second.pdb similarity_matrix=dayhoff

This is enabled with the following code fragments in super.py:

import libtbx.phil.command_line
phil_objects = []
argument_interpreter = libtbx.phil.command_line.argument_interpreter(
 master_params=master_params, home_scope="super")

...

 try: command_line_params = argument_interpreter.process(arg=arg)
 except: raise Sorry("Unknown file or keyword: %s" % arg)
 else: phil_objects.append(command_line_params)

As an added convenience, bare file names are also recognized, e.g. this is an alternative to the command
above:

mmtbx.super first.pdb second.pdb similarity_matrix=dayhoff

The complete code (including the fragments above) for supporting this generality is:

def run(args):
 phil_objects = []
 argument_interpreter = libtbx.phil.command_line.argument_interpreter(
 master_params=master_params, home_scope="super")
 fixed_pdb_file_name = None
 moving_pdb_file_name = None
 for arg in args:
 if (os.path.isfile(arg)):
 if (fixed_pdb_file_name is None): fixed_pdb_file_name = arg
 elif (moving_pdb_file_name is None): moving_pdb_file_name = arg
 else: raise Sorry("Too many file names.")
 else:
 try: command_line_params = argument_interpreter.process(arg=arg)
 except: raise Sorry("Unknown file or keyword: %s" % arg)
 else: phil_objects.append(command_line_params)

At this point we have to consolidate the two possible sources of information: bare file names (stored
under fixed_pdb_file_name and moving_pdb_file_name) and assignments via fixed=... or
moving=.... First, we combine all the Phil assignments (stored under phil_objects) into one
working_params object and use the extract() method to get easy access to the definitions (see
Newsletter No. 5):

working_params = master_params.fetch(sources=phil_objects)
params = working_params.extract()

Page 99

Now we override the Phil assignments with the bare file names if available, or generate an error message
if a file name is missing:

if (fixed_pdb_file_name is None):
 if (params.super.fixed is None): raise_missing("fixed")
else:
 params.super.fixed = fixed_pdb_file_name
if (moving_pdb_file_name is None):
 if (params.super.moving is None): raise_missing("moving")
else:
 params.super.moving = moving_pdb_file_name

raise_missing() is a simple function raising an informative exception (see super.py), e.g.:

Sorry: Missing file name for moving structure:
 Please add
 moving=file_name
 to the command line to specify the moving structure.

5.3 Processing of PDB input files
With all the input parameters consolidated in the params object above, reading in the PDB files is simple:

fixed_pdb = iotbx.pdb.input(file_name=params.super.fixed)
moving_pdb = iotbx.pdb.input(file_name=params.super.moving)

For both files we have to extract the sequence of residue names and corresponding C-alpha coordinates.
This is implemented as a function that we call twice:

fixed_seq, fixed_sites, fixed_site_flags = extract_sequence_and_sites(
 pdb_input=fixed_pdb)
moving_seq, moving_sites, moving_site_flags = extract_sequence_and_sites(
 pdb_input=moving_pdb)

For the complete implementation of extract_sequence_and_sites() please refer to super.py. For
simplicity, the function only considers the first MODEL in the pdb file, and for each chain only the first
conformer (as derived from the altloc symbols):

model = pdb_input.construct_hierarchy().models()[0]
for chain in model.chains():
 selected_residues = chain.conformers()[0].residue_class_selection(
 class_name="common_amino_acid")
 residues = chain.conformers()[0].residues()
 for ires in selected_residues:
 ...

Another simplification is the selection of "common_amino_acid" residues only. For these, the residue
names are translated to one-letter codes which are collected in a seq list:

import mmtbx.amino_acid_codes
...
 seq = []
 ...
 resi = residues[ires]
 resn = resi.name[0:3]
 single = mmtbx.amino_acid_codes.one_letter_given_three_letter[resn]
 seq.append(single)

Page 100

The rest of the body of the loop over the selected residues extracts the C-alpha coordinates if available:

from cctbx.array_family import flex
...
 sites = flex.vec3_double()
 use_sites = flex.bool()
 ...
 use = False
 xyz = (0,0,0)
 for atom in resi.atoms():
 if (atom.name == " CA "):
 xyz = atom.xyz
 use = True
 break
 sites.append(xyz)
 use_sites.append(use)

The coordinates are stored under sites. A corresponding use_sites array of bools (False or True) stores
if a C-alpha atom was found or not. Finally the collected sequence, coordinates and use flags are returned
with:

return "".join(seq), sites, use_sites

The list of one-letter codes is converted to a plain string on the fly. The plain string is more convenient to
work with in the following steps.

5.4 Sequence alignment
Sequence alignment is now a simple call of mmtbx.alignment.align as discussed before. The function
call parameters are taken directly from the Phil params object:

align_obj = mmtbx.alignment.align(
 seq_a=fixed_seq,
 seq_b=moving_seq,
 gap_opening_penalty=params.super.gap_opening_penalty,
 gap_extension_penalty=params.super.gap_extension_penalty,
 similarity_function=params.super.similarity_matrix,
 style=params.super.alignment_style)

From the align_obj we extract the alignment as shown before, but we spend a little more effort to
produce nice output:

alignment = align_obj.extract_alignment()
matches = alignment.matches()
equal = matches.count("|")
similar = matches.count("*")
total = len(alignment.a) - alignment.a.count("-")
alignment.pretty_print(
 matches=matches,
 block_size=50,
 n_block=1,
 top_name="fixed",
 bottom_name="moving",
 comment="""... see super.py ... """)

This code produces, e.g.:

The alignment used in the superposition is shown below.

The sequence identity (fraction of | symbols) is 55.1%
of the aligned length of the fixed molecule sequence.

Page 101

The sequence similarity (fraction of | and * symbols) is 75.5%
of the aligned length of the fixed molecule sequence.

 12345678901234567890123456789012345678901234567890

fixed VTDNIMKHSKNPIIIVVSNPLDIMTHVAWVRSGLPKERVIGMAGVLDAA
 * ||*||| * ||*|||||*|**|*||| |||| |*|| ||*|
moving IIPNIVKHSPDCIILVVSNPVDVLTYVAWKLSGLPMHRIIGSGCNLDSA

5.5 Least-squares superposition
To keep this example simple, in the least-squares superposition we want to use only the C-alpha
coordinates of matching residues, i.e. residues with a | or * symbol in the output above. This information
is stored under matches as obtained above. We also have to check if the C-alpha coordinates are available
for both of the matching residues. This information is stored under fixed_site_flags and
moving_site_flags. The matching + available C-alpha coordinates are obtained with this code:

fixed_sites_sel = flex.vec3_double()
moving_sites_sel = flex.vec3_double()
for ia,ib,m in zip(alignment.i_seqs_a, alignment.i_seqs_b, matches):
 if (m not in ["|", "*"]): continue
 if (fixed_site_flags[ia] and moving_site_flags[ib]):
 fixed_sites_sel.append(fixed_sites[ia])
 moving_sites_sel.append(moving_sites[ib])

Computing the superposition and printing out the RMSD between the aligned, superposed C-alpha atoms
is now very simple:

lsq_fit = superpose.least_squares_fit(
 reference_sites=fixed_sites_sel,
 other_sites=moving_sites_sel)
rmsd = fixed_sites_sel.rms_difference(lsq_fit.other_sites_best_fit())
print " RSMD between the aligned C-alpha atoms: %.3f" % rmsd

5.6 Export of moved coordinates
As the final step, mmtbx.super applies the rotation and translation obtained in the least squares fit to all
original coordinates in moving_pdb and writes out the modified atom records:

print "Writing moved pdb to file: %s" % params.super.moved
out = open(params.super.moved, "w")
for serial, label, atom in zip(moving_pdb.atom_serial_number_strings(),
 moving_pdb.input_atom_labels_list(),
 moving_pdb.atoms()):
 print >> out, iotbx.pdb.format_atom_record(
 record_name={False: "ATOM", True: "HETATM"}[atom.hetero],
 serial=int(serial),
 name=label.name(),
 altLoc=label.altloc(),
 resName=label.resname(),
 resSeq=label.resseq,
 chainID=label.chain(),
 iCode=label.icode(),
 site=lsq_fit.r * matrix.col(atom.xyz) + lsq_fit.t,
 occupancy=atom.occ,
 tempFactor=atom.b,
 segID=atom.segid,
 element=atom.element,
 charge=atom.charge)

Page 102

All of the information on the input ATOM or HETATM records is passed through as-is, except for the
coordinates. We make use of the scitbx.matrix facilities again to apply lsq_fit.r and lsq_fit.t to
atom.xyz. format_atom_record() is a very simple function, essentially just a Python string formatting
statement which could also be spelled out inline. However, the assignment of the data items to function
parameters is easier to read and understand than the raw formatting statement, and the function handles
some subtleties (e.g. overflowing serial and resSeq) that are easily overlooked. Using a central function
ensures that subtle and rare problems like this are fixed everywhere once they are discovered.

6 Overview of refinement development
In the crystallographic context structure refinement means optimization of certain target functions by
modifying various model parameters. Depending on several factors (e.g. available data, model quality and
size) the model can be parameterized in different ways, as grouped or individual atomic parameters.
Individual atomic parameters are coordinates, isotropic or anisotropic ADPs (atomic displacement
parameters), and occupancy factors. Grouped parameterizations are rigid body, group ADP, TLS, group
occupancy, and overall anisotropic scale factor. All of these except group occupancy refinement are
currently implemented in phenix.refine.

The most recent version of phenix.refine allows automatic refinement of any combination of
parameters for any part or combination of parts of the model. To the best of our knowledge this is a
unique feature among existing crystallographic software.

To give an example, for a molecule with three chains A, B, and C, the command:

phenix.refine model.pdb data.mtz \
 strategy=rigid_body+individual_sites+individual_adp+tls \
 sites.rigid_body="chain A" \
 sites.individual="chain B" \
 adp.tls="chain A" \
 adp.tls="chain C"

will perform refinement of:

chain A as a rigid body

individual isotropic ADPs for the whole molecule

individual coordinates for chain B

TLS parameters for chain A and chain C

More information about phenix.refine is available at http://phenix-online.org/download/cci_apps/ .

In the following we will highlight a few selected open-source modules supporting phenix.refine.

6.1 Rigid body refinement
The core machinery for rigid body refinement is located in
cctbx_sources/mmtbx/mmtbx/refinement/rigid_body.py. A typical call is:

rigid_body_manager = mmtbx.refinement.rigid_body.manager(
 fmodel = fmodel,
 selections = rigid_body_selections,
 refine_r = True,
 refine_t = True,
 convergence_test = True,
 nref_min = 1000,

Page 103

 max_iterations = 25,
 use_only_low_resolution = False,
 high_resolution = 2.0,
 low_high_res_limit = 6.0,
 max_low_high_res_limit = 8.0,
 bulk_solvent_and_scale = True,
 bss = bulk_solvent_and_scale_parameters,
 euler_angle_convention = "xyz",
 log = log)
rotations = rigid_body_manager.total_rotation,
translations = rigid_body_manager.total_translation

This performs L-BFGS minimization of a crystallographic target w.r.t. 6*len(rigid_body_selections)
parameters. The model (xray_structure), crystallographic data (Fobs, ...), and target definition are held
by fmodel. The selections can cover either the whole molecule or selected parts. Atoms that are not
selected are fixed during refinement. Depending on the parameters, it can perform either conventional
rigid body refinement in a selected resolution range or use more sophisticated multi-zone protocol where
the refinement starts in low resolution zone (defined by nref_min) and proceeds with the whole set of
reflections. Bulk solvent parameters and scale parameters are updated automatically if the model is
shifted more than a certain threshold.

6.2 Grouped isotropic ADP refinement
The code for grouped isotropic ADP refinement resides in
cctbx_sources/mmtbx/mmtbx/refinement/group_b.py. A typical call is:

mmtbx.refinement.group_b.manager(
 fmodel = fmodel,
 selections = group_adp_selections,
 convergence_test = True,
 max_number_of_iterations = 25,
 number_of_macro_cycles = 3,
 run_finite_differences_test = False,
 log = log)

This performs refinement of one isotropic ADP per selected group. Non-specific input parameters are
similar to those in rigid body refinement module. The refinable parameters are a shift in isotropic ADP
for each group, which are added to the original ADPs. The group-specific shifts are applied to both
isotropic and anisotropic atoms. For the latter the shift is added to the three diagonal elements of the ADP
tensor. In particular this is important for TLS refinement where the atoms in TLS groups are anisotropic
and the group ADP refinement is used. ADPs of non-selected atoms are unchanged.

6.3 TLS refinement
This is the most complex code mentioned here and is located in the directories
cctbx_sources/mmtbx/mmtbx/tls and cctbx_sources/mmtbx/tls (Python and C++ code,
respectively). The file cctbx_sources/mmtbx/mmtbx/tls/tools.py contains the class:

class tls_refinement(object):
 def __init__(self, fmodel,
 model,
 selections,
 refine_T,
 refine_L,
 refine_S,
 number_of_macro_cycles,
 max_number_of_iterations,
 start_tls_value = None,
 run_finite_differences_test = False,

Page 104

 eps = 1.e-6,
 out = None,
 macro_cycle = None):

which performs all principal steps in its constructor, including extraction of start TLS parameters from the
current ADPs (extracted from fmodel.xray_structure) and the current TLS parameters (zero in the
first macro-cycle), L-BFGS minimization of a crystallographic target w.r.t. the TLS parameters, split of
total ADPs into local and TLS components, and enforcement of positive-definiteness of the final ADP
tensors for each individual atom. These operations are exposed as helper functions in tools.py which
can also be called individually.

6.4 Individual coordinates, ADP and occupancies
The file cctbx_sources/mmtbx/mmtbx/refinement/minimization.py is one of the most matrue files
in the mmtbx and is the main driver for restrained refinement of individual coordinates, ADPs (isotropic
or anisotropic) and occupancies for selected atoms using X-ray and/or neutron data. E.g. to perform
coordinate refinement:

mmtbx.refinement.minimization.lbfgs(
 restraints_manager = restraints_manager,
 fmodel = fmodel,
 model = model,
 refine_xyz = True,
 lbfgs_termination_params = lbfgs_termination_params,
 wx = xray_term_weight,
 wc = geometry_term_weight,
 verbose = 0)

The model object contains selection information to determine which atoms are refined and which are
fixed.

7 Acknowledgments
We gratefully acknowledge the financial support of NIH/NIGMS under grant number P01GM063210.
Our work was supported in part by the US Department of Energy under Contract No. DE-AC02-
05CH11231.

8 References
Dayhoff, M.O. (1978). Atlas of Protein Sequence and Structure, Vol. 5 suppl. 3, 345-352.
Gotoh, O. (1982). J. Mol. Biol. 162, 705-708.
Grosse-Kunstleve, R.W., Adams, P.D. (2003). Newsletter of the IUCr Commission on Crystallographic
Computing, 1, 28-38.
Grosse-Kunstleve, R.W., Afonine, P.V., Adams, P.D. (2004). Newsletter of the IUCr Commission on
Crystallographic Computing, 4, 19-36.
Grosse-Kunstleve, R.W., Afonine, P.V., Sauter, N.K., Adams, P.D. (2005). Newsletter of the IUCr
Commission on Crystallographic Computing, 5, 69-91.
Henikoff & Henikoff (1992). PNAS 89, 10915-10919
Kabsch, W. (1976). Acta Cryst. A32, 922-923.
Kabsch, W. (1978). Acta Cryst. A34, 827-828.
Kearsley, S.K. (1989). Acta Cryst. A45, 208-210.
Needleman, S. & Wunsch, C. (1970). J. Mol. Biol. 48(3), 443-53.
Smith, T.F. & Waterman M.S. (1981). J. Mol. Biol. 147, 195-197.

Page 105

